THE NONLINEAR AND NONLOCAL INTEGRABLE SINE‐GORDON EQUATION
نویسندگان
چکیده
منابع مشابه
Integrable nonlocal nonlinear Schrödinger equation.
A new integrable nonlocal nonlinear Schrödinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contras...
متن کاملIntegrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
Two new integrable nonlocal Davey–Stewartson equations are introduced. These equations provide two-spatial dimensional analogues of the integrable, nonlocal nonlinear Schrö-dinger equation introduced in Ablowitz and Musslimani (2013 Phys. Rev. Lett. 110 064105). Furthermore, like the latter equation, they also possess a PT symmetry and, as it is well known, this symmetry is important for the ...
متن کاملIntegrable multidimensional versions of the nonlocal nonlinear Schrödinger equation
Two new integrable nonlocal Davey–Stewartson equations are introduced. These equations provide two-spatial dimensional analogues of the integrable, nonlocal nonlinear Schrö-dinger equation introduced in Ablowitz and Musslimani (2013 Phys. Rev. Lett. 110 064105). Furthermore, like the latter equation, they also possess a PT symmetry and, as it is well known, this symmetry is important for the ...
متن کاملNonlocal Symmetries of Nonlinear Integrable Models
It is well known that x-translation and t-translation invariance of (1) leads to the following symmetries: ux, ut of the KdV equation (1). In order to find more generalized symmetries, the concepts of recursion operators or strong symmetries, and hereditary symmetries were introduced by Olver and Fuchssteiner and used to find these symmetries [1, 2]. Furthermore, Galilean invariance of the KdV ...
متن کاملNonlocal kinetic equation : integrable hydrodynamic reductions , symmetries and exact solutions
By Gennady A. El†, Anatoly M. Kamchatnov‡, Maxim V. Pavlov z and Sergey A. Zykov § † Department of Mathematical Sciences, Loughborough University, Loughborough, UK ‡Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow Region, Russia z Lebedev Physical Institute, Russian Academy of Sciences, Moscow § SISSA, Trieste, Italy, and Institute of Metal Physics, Urals Division of Russ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling and Analysis
سال: 2005
ISSN: 1392-6292,1648-3510
DOI: 10.3846/13926292.2005.9637294